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ABSTRACT 

We show that a finite simple group has at most n 1"875+~ maximal 
subgroups of index n. This enables us to chaxacterise profinite groups 
which are generated with positive probability by boundedly many ran- 
dom elements. It turns out that these groups are exactly those having 
polynomial maximal subgroup growth. Related results are also estab- 

lished. 

1. I n t r o d u c t i o n  

The  d e t e r m i n a t i o n  of the  m a x i m a l  subgroups  of finite s imple groups  has been  an 

act ive p r o g r a m m e  of research ever since (and even before) the  classif icat ion of the  

finite s imple  groups;  see the  recent  book  [K1Li] and  the reference list  below. Here 

we employ  the  resul ts  t h a t  were ob ta ined  so far to  derive some a s y m p t o t i c  resul ts  

a b o u t  the  number  of m a x i m a l  subgroups ,  firzt, in finite s imple  groups,  t hen  in 

a r b i t r a r y  finite groups and in profini te  groups.  These  resul ts  will enable  us to  

solve some probabi l i s t i c  quest ions concerning genera t ion  of profini te  groups.  
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Given a group G, we denote by m n ( G )  the number of maximal subgroups of G 

of index n. It turns out that, for almost simple groups G, mn (G) is polynomially 

bounded. More precisely we have: 

THEOREM 1: For every e > 0 there is a constant c = c(e) such that  m n ( G )  < 

cn 1875+e for all finite almost  simple groups G and for all positive integers n. 

In fact the proof shows that m n ( G )  = n 1+~ if G is a classical group or an 

alternating group, while m~(G)  <_ n 1"s75+~ if G is an exceptional group of Lie 

type. The recent work [LiShl] plays an important role in the proof. 

Theorem 1 seems to have a wide range of applications. First, it implies that  a 

finite group G has at most [G[ c maximal subgroups (see Pyber [P]). It is also used 

in [PSh] to estimate the number of primitive permutation groups of given degree, 

with applications for counting subgrotips of infinite groups. Another consequence 

of Theorem 1 is the following. 

COROLLARY 2: Fix  e > 0 and let c = c(e) be as above. For a posit ive integer d 

set s = s(d) = max(d, 3, 1.875 + e + logc). Then a d-generated finite group has 

at most 2n s maxima/subgroups of  index n and trivial core. Equivalently, such a 

group has at most  2n s faithful primit ive permutat ion  representations o f  degree 

n (up to equivalence). 

In fact the proof of Corollary 2 yields a slightly better bound, and further 

improvements are possible. For example, L. Pyber informed us that he can 

bound s independently of d. However, these improvements do not affect the 

main results of this paper. 

Corollary 2 can be implemented in the study of generation probabilities in 

profinite groups. Recall that if G is a profinite group, then G, as an inverse 

limit of finite groups, is compact, and hence has a finite Haar measure, which we 

normalise so that  G has measure 1, and is thus a probability space. The group 

G is termed pos i t i ve ly  f in i te ly  g e n e r a t e d  (PFG) if for some k the measure 

P ( G ,  k) of the set of k-tuples generating G is positive (in which case we say that  

G is positively k-generated). This property was first discussed in the context of 

field arithmetic IF J]. 

In [KaLu] it is shown that  a free abelian profinite group of finite rank is PFG, 

but  a free non-abelian profinite group is not PFG. Many more examples are 

given in [Ma2]; in particular finitely generated prosoluble groups are PFG [Ma2, 

Theorem 10], as are the profinite completions of SLd(Z) for d _> 3 [Ma2, Theorem 
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15]. In fact we can generalise this as follows: 

PROPOSITION 3: Let k be a global field o[ arbitrary characteristic, S a finite 

set of valuations of k~ and Os the ring of S-integers of k. Let G be a simply 

connected simple algebraic group defined over k, and let F = G(Os). Suppose 

F has the congruence subgroup property. Then the profinite completion of F is 

positively finitely generated. 

We shall not include the proof of Proposition 3, since a much stronger result 

has just been proved in [BPSh]. It is shown there that every finitely generated 

profinite group G satisfying the Babai-Cameron-Ps type restrictions on its 

upper composition factors (see [BCP]) is positively finitely generated. Other 

examples of PFG groups occur in Bhattacharjee's work [Bh]. 

Most proofs that  a group G is PFG proceed by showing that  G has another 

property, that  of p o l y n o m i a l  m a x i m a l  s u b g r o u p  g r o w t h  (PMSG), where by 

this we mean that  there exists a number s, such that ran(G) ~ n s for all n. 

Let G be a profinite group satisfying m~(G) <_ n ~ for all n. Then a 

k-tuple of elements of G generates a proper subgroup if and only if these k 

elements lie in some maxim 1 subgroup, and the probability of that  is at most 

~ > 2  mn(G) n-k <- ~ > 2  n~-k" Since for k >_ s + 2 the above sum is less than 1, 

we see that  for these values of k, a k-tuple generates G with positive probability. 

This simple argument shows that  every PMSG profinite group is PFG. 

The combination of Corollary 2 with the Borel-Cantelli lemma (see Section 

4 below) enables us to prove the converse. We therefore obtain the following 

characterisation of PFG groups: 

THEOREM 4: A profinite group is positively finitely generated if and only i[ it is 

of polynomial maximal subgroup growth. 

Of course, this characterisation, as well as most of our results, rely heavily on 

the Classification of finite simple groups. 

The proof of Theorem 4 shows that,  if d elements generate G with positive 

probability, and s = s(d) is as in Corollary 2, then the sum ~ n > 2  m~(G) n-d-~ 

converges; in particular, m~ (G) = o(nd+s(d)). 

The above characterisation of PFG groups yields the following: 

COROLLARY 5: The collection of finitely generated residually finite PMSG 

groups is extension-closed. 
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Indeed, a similar result is proved in [Ma2, Proposition 7] for PFG groups. We 

are not aware of a direct (or indeed, a Classification-free) proof of this result. 

Apart from the notion of PFG groups, some related notions have been exam- 

ined in [Ma2]. Given a profinite group G and a natural number k, let Q((/, k) 

denote the probability that k random elements of G generate a finite index sub- 

group of G. It is known that Q(G, k) > 0 if and only if G is a PFG group [Ma2, 

Proposition 8]. However, while we cannot have P(G, k) = 1 (unless G = 1), the 

equality Q(G, k) = 1 is certainly possible, and it would be interesting to find the 

groups for which it holds. 

It is easy to see that  PSG groups (i.e. groups of polynomial subgroup growth) 

satisfy Q(G, k) = 1 for some k, but the converse was not clear. In Section 5 we 

construct many examples of non-PSG groups satisfying Q(G, k) = 1 (for suitable 

k). In particular we obtain the following. 

PROPOSITION 6: Let d > 3 and let G be the profinite completion of SLd(Z). 

Then, for some k, almost a11 k-tuples of elements of G generate a finite index 

subgroup. 

Since every group satisfying Q(G, k) = 1 is a PFG group, Proposition 6 extends 

[Ma2, Theorem 15] mentioned above. 

A similar result holds for S-arithmetic groups in characteristic 0 which satisfy 

the congruence subgroup property. The case of arithmetic groups in positive 

characteristic remains unclear. 

In our final result we continue the interplay between probabilistic results and 

growth behaviour. More specifically, we apply probabilistic arguments in order 

to shed some light on the number of generators of open subgroups in PSG groups. 

Recall that,  while finitely generated residually finite PSG abstract groups have 

finite rank [LMS], this is not the case for PSG profinite groups. However, we 

show below that  the number of generators of open subgroups in PSG profinite 

groups grows rather slowly. 

THEOREM 7: Let G be a profinite group of polynomial subgroup growth. Then 

there exists a constant c such that 

d(H) <_ c. v/log [G: H[, 

for all open subgroups H of G. 

It can be shown that  the bound given in Theorem 7 is best possible. 
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We conclude the introduction by stating a conjecture. 

CONJECTURE: For every ~ > 0 there is N -- N(e) such that, if G is a finite 

almost simple group and n > N(e), then mn(G) < nl+L 

This conjecture is proved here for alternating groups, classical groups, as well 

as small rank exceptional groups. It remains to deal with the groups of type F4, 

E6, 2E6, E7 and E8. The current information on maximal subgroups of these 

groups seems insufficient for that purpose. 

Some words on the structure of this paper. Section 2 is devoted to the proof 

of Theorem 1. In Section 3 we use the O'Nan-Scott  Theorem in order to deduce 

Corollary 2 from Theorem 1. Theorem 4 is proved in Section 4. In Section 5 we 

construct non-PSG groups satisfying Q(G, k) = 1. This is where Proposition 6 

is proved. The last section is devoted to the proof of Theorem 7. 

Notation: The notation is mostly standard. Logarithms are to the base 2. The 

core H c  of a subgroup H C_ G is the maximal normal subgroup of G which is 

contained in H. By a simple group we mean a nonabelian finite simple group. 

An almost simple group is a group lying between a simple group and its au- 

tomorphism group. The socle of a finite group G is denoted by Sou(G). The 

(minimal) number of generators of a group G is denoted by d(G). The rank of 

G is the supremum of d(H) over the finitely generated subgroups H of G. If G 

is a profinite group then d(G) is interpreted topologically, and subgroups H of 

G are assumed to be closed. In particular, by a maximal subgroup of a profinite 

group we mean a closed maximal subgroup, and such subgroups are always open 

(hence of finite index). Finally, we let an (G) denote the number of subgroups of 

index n in a group G. 

2. Counting maximal subgroups: simple groups 

Let T be a finite simple group and let T C_ G C_ Aut(T).  We may ignore finitely 

many simple groups and assume that  T is alternating or of Lie type. We shall 

sometimes count maximal subgroups of G up to conjugacy, taking into account 

the fact that  a subgroup of index n has at most n conjugates. It is easy to see 

that G/T has at most O(n) subgroups of index n; this follows from the fact 

that Out(T) is metacyclic-by-bounded. It therefore suffices to count maximal 

subgroups of G which do not contain T. 
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We note that  some of the bounds we shall give may be significantly improved 

with a bit more careful analysis. 

LEMMA 8: For every e > 0 there is N = N(e) such that, i fSoc(G) is alternating 

and n > N(e),  then ran(G) < n TM. 

Proof" We may assume G = Sk, the case G = Ak being similar. We may also 

disregard finitely many alternating groups and assume that  k h 13. Let H C_ Sk 

be a maximal  subgroup of index n not containing Ak. Then k < n. We distinguish 

between the following cases: 

1. H is not transitive. 

Then H - Ski x Sk2 with the natural intransitive action (where kl + k2 = k). 

Obviously the index of H in G determines the pair {kl, k2}, and so H is uniquely 

determined by n up to conjugacy. 

2. H is transitive but not primitive. 

Then H - Ski ~ Sk2 with the (transitive) imprimitive action, where klk2 = k. 

Again it is easy to verify that  the index n of H determines H up to conjugacy. 

3. H is primitive. 

Since H does not contain Ak, the order of H is rather small, and so its index 

n is rather close to k!. For our purpose it suffices to use Boehert 's 19th century 

result, showing that  the index of H is at least [(k + 1)/2]! (see [Wi, p. 41]). This 

yields n > [(k + 1)/2]! > 2 k (recall that  k _> 13). It  follows that  k < logn. 

By a result of Babai [B] (which applies the Classification Theorem), Sk has at 

most c 0~ k)4 conjugacy classes of primitive maximal subgroups. Note that  

C(l~ 4 ( c ( l ~ 1 7 6  4 = Tt~ 

We conclude that  Sk has at most n 1+~ maximal subgroups of index n. | 

LEMMA 9: For every e > 0 there is N = N(e) such that, i fSoc(G) is a classical 

group and n > N(e),  then m~(G) < n TM. 

Proo~ Write T = Soc(G) = Xk(q), where k is the dimension of the natural  

module, and q = pC is the order of the underlying field. Note that  

IGI > q ~k2 

for a suitable constant ~ > 0. 
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By a recent result of Guralnick, Kantor and Saxl [GKS, Theorem 2.7], G has 

at most cl (k) (log q)lOg k conjugacy classes of maximal subgroups, where cl (k) is 

a constant depending on k. Suppose first that  k is bounded, say k <_ c2. Then 

cl(k)(logq) l~ = [GI ~ Note that,  if n is the index of a maximal  subgroup 

M of G (not containing T), then IGI <_ n c3 where c3 depends on c2 (see [KILi, 

5.2.2]). Thus the number of conjugacy classes of such maximal subgroups M is 

at most n c3~ = n ~ 

It  remains to deal with classical groups in unbounded dimension k. By a 

theorem of Liebeck [Li], the maximal subgroups M of G are either of known 

types, or they are almost simple, with IM] < q3k. In the first case the conjugacy 

classes of the subgroups M are known, and it is easily verified that  there are n ~ 

classes of such subgroups of index n. See, for instance, [GKS, Lemma 2.1]. So it 

suffices to consider the almost simple subgroups M satisfying IMI < q3k. 

Let M be such a subgroup and let S be the socle of M. Then M = Na(S),  

so it suffices to count the possibilities for S. We follow the method of [KaLu]. 

It  is known that  the covering group S of S acts absolutely irreducibly on the 

natural  module V of T. Hence the number of choices for S up to conjugacy can 

be estimated by bounding the number of absolutely irreducible representations 

of S in characteristic p. 

Let s = ISI and t = q3~. Then lOut(S)] <_ logs _< logt, and this implies 

that,  given n, there are at most logt choicesfor s. Now, fixing s, there are at 

most 2 possibilities for the simple group S up to isomorphism, and the covering 

group of S has at most s log s < t log t absolutely irreducible representations in 

characteristic p. Any such representation corresponds to a A-conjugacy class of 

subgroups of G which are isomorphic to S, where A is the normalizer of G in the 

respective projective group PGL(V).  It  is known that  a A-conjugacy class of a 

subgroup of G breaks into at most k conjugacy classes in G. 

Altogether it follows that  there are at most 

B := 2 �9 log t - t log t �9 k = 18k 3 log 2 q �9 q3k 

conjugacy classes for M (given its index n). Recall that  n > IGIq -3k > q ~k~-3k. 

Fixing e > 0 and choosing c2 = c2(~) large enough, we obtain B < n ' .  This 

completes the proof. | 

We now deal with exceptional groups of Lie type. 
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LEMMA 10: For every e > 0 there is N = N(e) such that, i f T  = Soc(G) is an 

exceptional group of Lie type and n > N(e), then the following hold: 

(i) ran(G) < n 1+~ i f T  is of type 2B2, G2, 2G2, 3D4, or 2F4. 

(ii) mn(G) < n 1+7/s+~ i f T  is of type F4. 

(iii) m,(G)  < n 1+4/5+e i f T  is of type E6 or 2E6. 

(iv) mn(G) < n 1+7~176 i f T  is of type ET. 

(v) ran(G) ( n 1+2/3+e i fT  is of type Es. 

Proo~ Let G, T be as above. As before, it suffices to count maximal subgroups 

of G not containing T. Given the fact that G has such a subgroup of index n, we 

obtain [G[ <_ n c for some absolute constant c (this is a particular case of [BCP]). 

This implies that [ Out(T)[ _ O(log n), an inequality which will be useful in what 

follows. 

By Theorem 2 of Liebeck and Seitz [LiSe], if H is a maximal subgroup of G 

(not containing T), then one of the following holds: 

1. H is a parabolic subgroup. 

2. H is a subgroup of maximal rank (see [LSS] for the terminology). 

3. H = NG(E), the normalizer of an elementary abelian subgroup E. 

4. H = Co(a) ,  the centralizer of an automorphism a C Aut(T) whose order 

is prime; moreover, ~ is a field automorphism, or a graph automorphism, or a 

graph-field automorphism. 

5. The generalized Fitting subgroup F* (H) of H is a direct product of 2 or 3 

simple groups of known types (cf. [LiSe, pp. 355-356]). 

6. H is almost simple. 

We claim that there are n ~ conjugacy classes of subgroups H of types 1-5. 

Clearly, there are O(1) conjugacy classes of parabolic subgroups in G. Now, 

the maximal subgroups of type 2 are determined by Liebeck, Saxl and Seitz 

[LSS]. It is clear from the main theorem and table 5.1 of [LSS] that there are 

O(1) choices for H up to conjugacy. The maximal subgroups of type 3 are 

determined by Cohen, Liebeck, Saxl and Seitz [CLSS]. By Theorem 1 and table 

1 there, E is uniquely determined given T up to conjugacy in Aut(T).  Note 

that I Aut(T):  G I < I Out(T)[ < O(logn). It follows that,  up to conjugacy in G, 

E can be chosen in O(logn) ways. In case 4, note that  a can be chosen in at 

most ] Out(T)[ < O(logn) ways (up to conjugacy), and this bounds the number 

of choices for H up to conjugacy. Conjugacy classes of subgroups of type 5 are 

determined in [LiSe], and there are O(1) of them. This proves the claim. 
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It remains to enumerate maximal subgroups of type 6. If T is of type 2B2, (]2, 

2G2, 3D4, or 2/'4 then the conjugacy classes of such subgroups are also known 

(cf. [Su], [Co], [A2], [Kll], IN12], [M]) and it easily follows that there are O(1) 

conjugacy classes. Thus part (i) of the lemma follows. 

So assume that T is of type F4, E6, 2E6, E7, or E 8. Let H be an almost simple 

maximal subgroup of G and let S be the simple socle of H. By [LiShl, Section 1] 

we may assume that  S is of Lie type and that its (untwisted) Lie rank is at most 

half of the Lie rank of G, otherwise there are at most c log q < d log n choices for 

H up to conjugacy. Applying Theorem 1.2 of [LiShl] we conclude that  

(1) IHI < 12q ~ logp q, 

where a = 20, 28, 28, 30, 56 if T = Ft,  E6, 2E6, ET, E8 respectively. This yields 

1 . q b - a ,  
n = I(]I/IHI > IGI/(12q~logpq)> 241ogp-----q 

where b = 52, 78, 78, 133,248 respectively. It easily follows that 

(2) q < n (b-a)-1+~ 

Clearly, S = Soc(H) is a subgroup o f t  and H = No(S).  To count the number 

of choices for the subgroup S of T we use Lemma 3.1 of [LiShl], according to 

which 

IS[ <_ ITli(T), 

where S ranges over all simple subgroups of T and i(T) is the number of 

involutions in T. In our case ISI _< n (as follows from (1) and (2)) and IH/SI <_ 

I Out(S)l _< logn. Thus ISI >_ IHI/logn = IGI/(nlogn). By restricting the above 

sum to subgroups of order > IGl/(n logn), we see that there are at most 

n log nlTli(T) /l(] I <_ n l o g n ,  i( T) 

choices for S C T. 

It remains to evaluate the number of involutions i(T) in the respective groups 

T. By the proof of [LiShl, Proposition 2.1] we have i(T) < cq d where c is 

an absolute constant and d = 28, 40, 40, 70, 128 if T = F4, E6, 2E6, ET, E8 

respectively. We see that  the number of possibilities for H is at most n log n .  qd  = 

n1+O(1), qd. In view of (2) we conclude that H can be chosen in at most 
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ways. Subst i tut ing the values for a, b, d we obtain the result. | 

Theorem 1 is proved. 

3. Counting maximal subgroups: finite groups 

Recall tha t  the maximal  subgroups with trivial core of a finite group are described 

by the result known as the O 'Nan-Sco t t  Theorem. There are several versions of 

this result (see, e.g., [LPS], as well as [AS] for a more refined version). We shall 

need only the weak version below. Before stat ing it we recall tha t  a diagonal 

subgroup of a direct product  Ti x . . .  x Tk of isomorphic groups {Ti} is a subgroup 

D for which the projection on each component  Ti is an isomorphism between D 

and Ti. 

O'NAN SCOTT THEOREM: Let G be a finite group and let M be a minimal 

normal subgroup of G, so that M = T1 x . . .  x Tk for some set of isomorphic 

simple subgroups Ti. Let H be a maximal subgroup of G with a trivial core. 

Then H belongs to one of the following types. 

1. H is a complement of M.  

2. N := H A M r 1, H = NG(N) ,  the subgroups {Ti} are non-abelian and 

constitute a full conjugacy c/ass of subgroups, and either 

2a. N = N1 • " '  • Nk, where Ni is a proper subgroup of Ti and the Ni 's  are 

conjugate in H, or 

2b. There exists a partition {X, . . . , k}  = [.Ji=l A(i), such that N = 

D1 x . . .  x D~, where Di is a diagonal subgroup of rljeA(i) Tj and the 

subgroups {Di} are conjugate in H. 

(For a given index n, there cannot exist maximal subgroups both of type 1 and 

of type 2.) 

We now count the number  of maximal  subgroups of G with a trivial core and 

index n. Using the notat ion of the above result, we begin with the complements  

of M.  If  H is one of them, and K another one, then each element x E K can be 

wri t ten as x -- hm(h),  where h E H and m(h) E M.  The function h H m(h)  is a 

so-called crossed homomorphism,  i.e. it satisfies m(hih2)  = m(hi)h2m(h2).  From 

this equat ion it is clear tha t  the crossed homomorphism in question, and with it 

K,  is determined by its values on a set of generators for H. Since H ~- G / M ,  the 

group H is also generated by d elements, and therefore the number  of crossed 

homomorphisms  from H to M is at most  IMI (t = n d. 
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Next let H be of type 2a. Denote L = NH(N1)  -- NH(T1).  Then L is just 

the stabiliser of 1 in the transitive permutation representation of H on the set 

of indices {1 , . . . ,  k}. Let R1 be an L-invariant subgroup of T1 containing N1, 

and let R 2 , . . . ,  Rk be the H-conjugates of Rx. We choose the notation so that  

Ri C_ Ti, and then R = R1 x �9 .. x Rk is H-invariant and H R  is a subgroup of G; 

hence either H R  = H or H R  = G; this means that Rl = N1 or T1. Thus N1 is 

a maximal L-invariant subgroup of T1, and similarly tbr N 2 , . . . ,  Nk. 

We write C = CLTI(T1) and S = LT1/C .  Then S is an almost simple group 

with socle T1, and I(  -- LN~ is a maximal subgroup of S satisfying K N T 1  = N1. 

Here IS: t (  I = IT1: Nil ----"~, say, so n = IG: H I = ?rt k and k < logn. Now 

Theorem 1 shows that the number of possibilities ibr choosing K,  and with 

it N1, is at most cm 1"S75+r and similarly for N2 , . . . ,  Nk. Thus the number of 

possibilities for choosing N, and with it H, is at most (cmxs75+E) k = c k n  1"875+e 

/tlog c§ 

Finally, let H be of type 2b. To determine the number of possibilities in this 

case we have first to determine the number of allowed partitions of {1 , . . . ,  k}. 

Each such partition is a system of imprimitivity for the permutation group that  

G induces on {1 , . . . ,  k}. Denoting L = NG(T~), such systems of imprimitivity 

correspond to subgroups of G containing L. Since IG: L I -- k, each such subgroup 

is generated by L and at most further log k elements; replacing a generator by 

another element of the saxne coset of L does not change the subgroup, so the 

number of subgroups is at most k l~ Now n = IG: H I = IM: N I = ITll k-~, and 

if t = IA(1)l, then t _> 2 (otherwise N = M), so r = k i t  <_ k /2 ,  thus k _< logn 

and k l~ k < n. 

Once the partition {A(i)} is given, the subgroup Dl is determined by a set of 

isomorphisms between T1 and the other Tj 's  for j E A(1), and the number of 

choices for these isomorphisms is I Aut(Zl)l t - l ,  and similarly for the other Di's; 

hence the number of possibilities for D is I Aut(T1)l (t-1)~ < I T ~ 1 2 ( ' - t )  ~ = n 2. 

Here we have used the very crude estimate I Aut(T~)l < ITll 2, which follows, 

e.g., from the fact that  T1 can be generated by 2 elements, and the equalities 

n = IM: NI,  IMI = ITll k = ITll ~t, Ig l  = lOll ~" = ITII". Altogether we find that  

there are at most n 3 possibilities for choosing H in case 2b. 

Note that,  given the index n, some of the maximal subgroups of index n may 

be of type 2a, and some of type 2b. It follows that the number of maximal 
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subgroups of index n with trivial core is at most 

max(n d, nl.S75+~+log c + n 3) _< 2ns(d). 

This completes the deduction of Corollary 2 from Theorem 1. 

Remark: If the minimal normal subgroup M is abelian then, as is well known, 

all maximal subgroups of trivial core are complements of M, and their number 

is nlHI(G, M)I. Moreover, IHI(G, M)I <_ n 2/3 in this case [Gu, Theorem B], 

yielding a better  value for s. 

4. Characterising PFG groups 

In this section we apply the results obtained so far in order to prove Theorem 4. 

We start  by quoting the following well known probabilistic result. 

BOREL-CANTELLI LEMMA ([Re, pp. 389-392]): Let Xi be a series of events in 

a probability space X with probabilities pi. 

(i) If  X~ are pairwise independent and ~ Pi diverges, then the probability that 

infinitely many of the Xi happen is 1. 

(ii) I f  ~ p~ converges, then the probability that infinitely many of the Xi  

happen is O. 

Now, let G be a PFG profinite group, and suppose d elements generate G with 

positive probability. Let X be the product G d of d copies of G (with a normalised 

Haar measure), considered as a probability space. 

If H and K are two finite index subgroups of G, then the events H d and K d 

are independent exactly when 

IG: H n K I = IG: H[IG: KI, 

which is equivalent to G = H K .  Suppose that H and h" are maximal subgroups, 

and that  they have distinct cores. Then we may assume, without loss of general- 

ity, that  Ha ~= KG. It follows that H c  is not contained in K,  so that H c K  = G 

(by the maximality of K). This in turn yields H K  = G. We conclude that,  

if H, K C G are maximal subgroups with distinct cores, then H a and K s are 

independent events in the probability space X. 

Let Ni be an enumeration of all cores of maximal subgroups of G (each core 

occurring only once). For each core Ni choose a maximal subgroup Mi such that  
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(M~)G = N~, and let cn(G) be the number of the maximal subgroups of index n 

obtained in this way. Let Xi be the event defined by M d in X. By construction 

X~ are independent events whose probabilities are p~ = IG: M~I -d respectively. 

Note that  

n>2  

If the right hand side diverges then the Borel-Cantelli Lemma shows that,  with 

probability 1, a d-tuple belongs to infinitely many of the M~'s, so the set of d- 

tuples generating G has measure 0. This contradicts our choice of d. We conclude 

that 

~-~ cn(a)n -d < oo. 
n>_2 

Consequently we have c~(G) = o(n d) (in fact, using a quantitative version of 

the Borel-Cantelli Lemma it can be shown that ~-~'~n>2 c~(G) n-d <- 1/P(G, d); in 

particular, c~(G) <_ nd/p(G, d) for all n). 

We now apply Corollary 2 for each group G/NI, where Ni is the core of a 

maximal subgroup of index n. Since G can be generated by d elements we 

conclude that  

ran(G) < cn(G) " 2n s(d). 

It follows that 

mn(a) = o ( # + s ( d ) ) .  

Therefore G is a PMSG group. 

Theorem 4 is proved. 

Remarks: 1. If d is large and G is positively d-generated, then we obtain 

mn(a) = o(n2d). 

2. The proof given above actually holds under the weaker assumption that  

Q(G, d) > 0 (recall that Q(G, d) denotes the probability that d random elements 

of G generate a finite index subgroup). 

5. The  probabil ity of  generating a finite index subgroup 

In this section we give some conditions which imply the equality Q(G, k) = 1. 

In particular, we shall construct various non-PSG groups in which k random 

elements generate a finite index subgroup with probability 1. 
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Let G be a profinite group, and let F be a collection of open subgroups of G. 

We shall say that F is a cover if every closed subgroup H of infinite index in G 

is contained in infinitely many subgroups from F. We denote by an(G, F) the 

number of subgroups H E F satisfying IG: H[ = n. The collection F will be 

called p o l y n o m i a l  if, for some c, an(G, F) <_ n c for all n. 

LEMMA 11: Let G be a profinite group which admits a polynomial cover. Then 

Q(G, k) = 1 for some k. 

Proof: For each subgroup M E F, let XM be the event M k inside the 

probability space X = G k. Then XM occurs with probability IG: MI -k, and 

~MeFIG: MI -k = ~-~.,~>la,~(G,F)n -k. Suppose an(G,F) << n ~ for all n. 

Choosing k > c + 1, we see that  

E P(XM)<_ E nC-k < oc, 
M E F  n 

where P is the probability measure on X. By part (ii) of the Borel-Cantelli 

Lemma we conclude that,  with probability 1, only finitely many of the events 

XM happen. This means that,  if x l , . . .  ,xk are k random elements of G, and H 

is the closed subgroup they generate, then, with probability 1, H is contained in 

only finitely many subgroups M E F. Since F is a cover it follows that,  with 

probability 1, [G: H I < c~. I 

COROLLARY 12: Let G be a profinite PMSG group with the property that every 

closed subgroup H C G of infinite index is contained in infinitely many maximal 

subgroups M C G. Then Q(G, k) -- 1 for some k. 

Proof." In this case the collection of maximal subgroups of G is a polynomial 

cover. 1 

It would be interesting to find out which profinite groups satisfy the conditions 

of Corollary 12. One type of example is given below. Let G be the Cartesian 

product of infinitely many pairwise non-isomorphic finite simple groups Ti. It 

is easy to see that  every maximal subgroup of G is of the form Mi • I-[j#~ Tj, 

where M~ is a maximal subgroup of T~ (see, e.g., [Ma2, Lemma 16]). Now, let 

H be a closed subgroup of G, and suppose H is contained in only finitely many 

maximal subgroups. Then there exists a finite set S such that, if i r S, then H 

is mapped onto Ti by the natural projection G --* T~. By the structure of the 
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maximal subgroups of 1-Iir Ti we see that  H is mapped onto 1-Iir Ti. Hence 

H .  1-[~es Ti = G, and since I-Les Ti is finite we have IG: H I < co. 

It follows from the above discussion that 

i 

Using Theorem 1 we have m~(Ti) < cn 1"s75+~. This yields 

m,~(G) < f(n).  cn l"s75+e, 

where f(n) equals the number of indices i such that Ti has a maximal subgroup 

of index n. 

Using the information on the minimal degrees of permutation representations 

for the finite simple groups (see [K1Li, 5.2.2] and [LaSe]), it is straightforward to 

verify that  f(n) <_ Cn for some absolute constant C (and by letting Ti range over 

certain families of simple groups, f(n) can be made much smaller). We conclude 

that  

mn(G) = O(n2"S75+~). 

Thus G is a PMSG group. 

We have proved that  G = 1-I Ti satisfies the conditions of Corollary 12. It 

follows that  Q(G, k) = 1 for some k (in fact, using results from [LiShl], [LiSh2], 

it can be shown that  k = 3 will always do, and quite often we can take k = 2). 

On the other hand, there are many ways to choose Ti such that  the resulting 

group G is not a PSG group. 

Proof of Proposition 6: It is well known that G -= l ip  SLd(Zp), where p ranges 

over the rational primes. Let F be the collection of all open subgroups of G 

which have the form Hp • 1-IqCp SLd(Zq), where p is a prime and Hp is an open 

subgroup of SLd(Zp). We claim that  F is a polynomial cover. 

First note that  there is a constant c (depending only on d) such that  

a~(SLd(Zp)) _< n c for all n and p. This follows, for instance, from [Sh2, Prop. 

1.1], using the fact that  the rank of SLd(Zp) is bounded in terms of d alone. By 

the definition of F we see that  

a,~(G, F) = Ean(SLd(Zp)) ~ f(n)n c, 
p 

where f(n) equals the number of primes p with the property that  SLd(Zp) has a 

subgroup of index n. Since the minimal index of a proper subgroup of SLd(Zp) 
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is bounded below by p, it follows that f (n) <_ n (in fact f(n) = o(nW(d-1))). We 

see that  an(G, F) <_ n c+1, so F is a polynomial collection. 

It remains to show that F is a cover. Let H c G be a closed subgroup which is 

contained in only finitely many members of F. Then we immediately see that  H 

is mapped onto SLd(Zp) for almost all p, and so there is a finite set S of primes 

such that  H _D 1-Ires SLd(Zp). 

Fix a prime p E S. Then the image of H under the projection G --* SLd(Zp) is 

contained in only finitely many open subgroups of SLd(Zp). Therefore this image 

has finite index in SLd(Zv), and this is valid for each p E S. It follows easily that  

[G: H I < co. 

We have shown that F is a polynomial cover. Proposition 6 now follows by 

applying Lemma 11. 

Recall that  SLd(Z) is not a PSG group (see [Lu] for its precise growth type). 

Finally, note that  Lemma 11, the fact that Q(G, k) -- 1 implies that G is PFG, 

and Theorem 4 give rise to the following result on the subgroup structure of 

pro finite groups. 

COROLLARY 13: Let G be a profinite group which admits a polynomial cover. 

Then G has polynomial maximal subgroup growth. 

It would be interesting to try to find a Classification-free proof of this result. 

6. T h e  r a n k  f u n c t i o n  

In this section we use probabilistic ideas in order to shed some light on the relation 

between rank and subgroup growth. 

While finitely generated residually finite abstract groups of polynomial sub- 

group growth have finite rank [LMS], this is not the case for profinite groups. 

Examples of finitely generated PSG profinite groups of infinite rank were con- 

structed in [MS]. Such examples also give rise to countably generated residually 

finite (abstract) PSG groups of infinite rank. The structure of such groups is not 

well-understood. 

In view of this situation it makes sense to pose the following question: assuming 

G is a PSG profinite group, how fast can the number of generators of open 

subgroups of G tend to infinity? We remark that,  by [Mal, Theorem 2], PSG 

profinite groups are always finitely generated (as profinite groups), and so are 

their open subgroups. 
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The information we need is encoded in the following function, which will be 

referred to as the r a n k  f u n c t i o n  of G: 

r~(G) = max{d(H):  H is an open subgroup of G with IG: H I < n}. 

Note that  rn(G) (as a function of n) is monotonically increasing, and that  it is 

bounded if and only if G has finite rank. Note also that,  by [Shl, Lemma 2.4], 

if G is a pro-p group and r~(G) is unbounded, then rn(G) ~ c logn  for all n 

(where c > 0 is a suitable constant). Of course, if G is a free profinite group on 

d > 1 generators, then r~(G) grows linearly with n. However, for PSG groups 

one expects a much slower rate of growth. Indeed, in [Mal, Theorem 5] it is 

shown that  rn(G) = o(logn) for a PSG profinite group G. In this section we 

modify that  proof to find the fastest possible growth of the rank function in such 

groups, showing that  

(3) r~(G) = O ( l o x / ~ )  for all PSG groups G. 

To prove (3), let G be a PSG profinite group, and suppose an(G) <_ n ~ for all 

n. Let H C_ G be an open subgroup of index n. Let P(H, k, m) be the probability 

that  k elements chosen at random from H generate a subgroup of index > m in 

H. Then 

P(H,k,m) <_ E a~(H)i-k <- E ani(G)i-k ~- E (ni)~i-k" 
i ~ m  i ~ m  i ~ m  

This yields 

P(H, k, m) < n ~ E it-k" 
i ~ m  

Setting k = c + r + 1 for r _> 1 we obtain ~ > m  ic-k = ~-'~i>,~ i - r - 1  < m - r "  

Suppose m and r are chosen so that  

(4) m r > n c. 

Then P(H, k, m) < nCm -~ _< 1. This implies that  a certain k-tuple from H 

generates a subgroup M of index at most m in H,  and so 

(5) d(H) <_ d(M) +loglH: M I _~ k + l o g m  = c +  r + 1 + l o g m .  

Let r, m be the minimal integers such that  r _ ~/c log n and log m _> x/c '~g n. 

Then r l o g m  > clogn,  so condition (4), and with it (5), are satisfied. Using the 
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obvious inequalities r, log m _< ~ g  n + 1 we obtain 

d(H) <_ 2V'-cv~g n + c + 3. 

Thus (3) follows, and with it Theorem 7. | 

I t  will be shown in [Sh2] that  the bound in (3) is best possible: there exists a 

PSG profinite group G and a constant c > 0 such that  rn(G) >_ clx/T~n for all n. 

The group constructed is a Cartesian product of certain (carefully chosen) finite 

simple groups, and the construction relies heavily on number-theoretic methods. 
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